Direct numerical simulations of incompressible Rayleigh–Taylor instabilities at low and medium Atwood numbers

نویسندگان

چکیده

Direct numerical simulations of two-dimensional (2D) and three-dimensional (3D), single-mode multi-mode, incompressible immiscible Rayleigh–Taylor (RT) instabilities are performed using a phase-field approach high-order finite-difference schemes. Various combinations Atwood number, Reynolds surface tension, initial perturbation amplitude investigated. It is found that at high numbers, the if significant, could prevent formation Kelvin–Helmholtz type within bubble region. A relationship proposed for vertical distance spike vs number. The reaccelerate after reaching temporary plateau due to reduction friction drag as result vortices also momentum jet traveling upward interface 3D instability grows exponentially; however, higher number and/or lower in noticeably larger area growth. shown multi-mode RT initially displays an exponential growth rate similar instabilities. Due collapse merging individual instabilities, strongly dependent mesh resolution rate. However, ratio kinetic energy over released potential exhibits almost steady state growth, with values around 0.4, independently resolution.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulations of Incompressible Mhd Turbulence

The study of incompressible magnetohydrodynamic (MHD) turbulence gives useful insights on many astrophysical problems. We describe a pseudo-spectral MHD code suitable for the study of incompressible turbulence. We review our recent works on direct three-dimensional numerical simulations for MHD turbulence in a periodic box. In those works, we use a pseudo-spectral code to solve the incompressib...

متن کامل

Direct Numerical Simulation of Flows over an NACA-0012 Airfoil at Low and Moderate Reynolds Numbers

Direct numerical simulations (DNS) of flow over an NACA-0012 airfoil are performed at a low and a moderate Reynolds numbers of Rec=50*10 and 1*10. The angles of attack are 5 and 15 degrees at the low and the moderate Reynolds number cases respectively. The three-dimensional unsteady compressible Navier-Stokes equations are solved using higher order compact schemes. The flow field in the low Rey...

متن کامل

Direct Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers

Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...

متن کامل

Molecular Dynamics Simulations of Nanochannel Flows at Low Reynolds Numbers

In this paper we use molecular dynamics (MD) simulations to study nanochannel flows at low Reynolds numbers and present some new interesting results. We investigated a simple fluid flowing through channels of different shapes at the nano level. The Weeks-Chandler-Anderson potentials with different interaction strength factors are adopted for the interaction forces between fluid -fluid and fluid...

متن کامل

Numerical study of dynamo action at low magnetic Prandtl numbers.

We present a three-pronged numerical approach to the dynamo problem at low magnetic Prandtl numbers P(M). The difficulty of resolving a large range of scales is circumvented by combining direct numerical simulations, a Lagrangian-averaged model and large-eddy simulations. The flow is generated by the Taylor-Green forcing; it combines a well defined structure at large scales and turbulent fluctu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Fluids

سال: 2021

ISSN: ['1527-2435', '1089-7666', '1070-6631']

DOI: https://doi.org/10.1063/5.0049867